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1. INTRODUCTION AND RESULTS

For a Riemann integrable function f on the closed interval [0, 1], we let
I denote the Riemann integral of f over [0, 1] and consider the Riemann sums

n

1
Ry(f;a@) = — ¥ f((k — a)n),
k=1
where 0 < a < 1; we set R,(f; 1/2) = R,(f). Some well-known results are
included in the following theorem.

THEOREM 1. (a) If fis Riemann integrable on [0, 1], then
R,.(f; a) — I = o(1) as n — o for each a, 0<a<l
(b) Iffis a function of bounded variation on [0, 1] then
R, (f; a) — I = O(1/n) as n-— o for each a, 0<a<l.

(¢) If f is absolutely continuous on [0, 1], then R, (f) — I = o(1/n) as
n— .

(d) If f is differentiable on [0, 1] and its derivative f' is of bounded
variation on [0, 1], then | R,(f) — I| < T(f")/8n? for all n, where T(f’) is the
total variation of f' on [0, 1].

Now (a) is clear. The proof of (b) is easy and can be found, essentially,
in [2]. Proofs of the weaker and somewhat different forms of (c) and (d)
are given in [2]. A proof of (c) is given in [1], where it is also pointed out that
the Riemann sums R,(f) cannot be replaced by R,(f;a) with a # 1/2.
A proof of (d) is included in the following section, where we also indicate a
unified proof of (b), (¢) and (d) for R, (f) — I (i.e., for a = 1/2). We also
show that O(1/n?) is the best possible estimate for R,(f) — [in (d), no matter
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how smooth the function fis. One of the main purposes of this paper is to
construct examples showing also that the other estimates in Theorem 1
cannot be improved. Perhaps our methods of proof (particularly, the use of
the saw-tooth functions in the proofs of Theorems 1, 4 and 5) are more
interesting than our results, especially as some of these results may already
be known.

THEOREM 2. Let {¢,} be a sequence of positive numbers which converges
monotonically to zero. Then there is a Riemann integrable function f on [0, 1]
such that R,(f;0) — I = ¢, for all n.

THEOREM 3. There exist a positive number ¢, , an increasing function f of
total variation less than one, and a sequence of positive integers n; — oo, such

that n {1 — R, (f)} = € for all k.

Theorem 3 shows that the hypothesis of absolute continuity in (c) of
Theorem 1 cannot be replaced by that of bounded variation.

THEOREM 4. Let {¢,} be any sequence of positive numbers converging to
zero. Then there is an absolutely continuous function f on [0, 1] such that
m{l — R, ()} = e for k = 1,2,..., where {ny} is some sequence of positive
integers tending to infinity.

THEOREM 5. If f is twice differentiable and f" is bounded and almost
everywhere continuous on [0, 1], then

lim nll — R/} = 35 [ " = (') — £ @324,

A proof of Theorem 5, assuming continuity of f” on [0, 1], is given in [2].
Our proof of Theorem 5 here will be a continuation of the proof of
Theorem 1 (d). As a consequence of Theorem 5, we see that the rate of
convergence of R,(f) to I cannot be improved to o(1/n2) unless f'(0) = f'(1),
no matter how smooth the function f is. In particular, if f” is nonnegative
and does not vanish on a set of positive measure, then O(1/n?) is the best
estimate for R, (f) — L.

COROLLARY. Iffis twice differentiable, f" is bounded and almost everywhere
continuous, and f'(0) = f'(1), then R, (f) — I = o(1/n?).
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2. THE SAw-TooTH FUNCTIONS

For 0 <5 < 1, we denote by y, the characteristic function of the closed
interval [s, 1], and for each positive integer #n, we let

n
S, = 2, Xe—1/23/m -
k=1

Consider the ‘“saw-tooth™ functions uv,(f) = s,(tf) — nt. For each n,
v,(0) = v,(1) = 0, and v, lies between — 1/2 and 1/2 and is linear with the
exception of » unit jumps at the points (k — 1/2)/n, k = 1,..., n. It is also
clear that if f'is Riemann integrable on [0, 1], then

RN — 1= [ @) don(0.

Hence, if fis of bounded variation on [0, 1], then

R(H) = 1= = [ w0 @),
so that

1 1
| Rf) =11 <o | 1)1
That is, we have the following corollary of statement (b) of Theorem 1.

CoRrOLLARY. If f is a function of bounded variation on [0,1), then
| Ri(f) — I < T(f)/2n, where T(f) is the total variation of f on [0, 1].

If £ is absolutely continuous on [0, 1], then f' is Lebesgue integrable there
and

1.,
Rif)—T= =] fon,

so that by a proof similar to that of the Riemann-Lebesgue theorem, we see
that R.(f) — I = o(1/n).

Now, let f be differentiable with f’ of bounded variation on [0, 1]. Let
T(f") denote the total variation of f’ on [0, 1], and let

@) = | 0 po(1) dt.

Then u,(k/n) = u,(0) = Ofork = 1,..., n, each u,, is periodic with period 1/n,
and

1/2n
max, | un(t)] = f 0 di=1/8n.
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But
Ry(f) — I = — %fovnf’ - %fﬁundf'-
Hence,
| RAf) — 1] < T(f)/8n.

This completes the proof of statement (d) of Theorem 1.
Now, suppose that f” is bounded and almost everywhere continuous on
[0, 1], i.e., " is Riemann integrable there. Then

RRAF) = 1 =1 [ wnf”

n

T

k=1 (k—1)/n

n

o § P ) o A a

k—1
n

— :’" 0 ‘; (e + ) a

1 n
— Jn(xfn) 3 f7(Ge + ke — Djm) dx.
k=1
Here, it can be seen that
z/n
Ax/n) = v,
wxfn) = |

z/n
f —ntdr  if 0<x < 1/2,

0

/n
~—l/8n—|—fj/2 A —nd  if 12<x<]1,

- g——x2/2n if 0<x<1)2,
T = — x)?¥2n if 12<x<1.

Let
W(x) = 3x2/2 if 0<x<1/2,
T — X2 if 12<x<L.
Then j(l,w = 1/24 and u,(x/n) = —w(x)/n for all n and for 0 < x < 1.
Hence,

—nR() ~ 1) = [ W) R(f73 1 = %) dx
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which gives

tim 1 — Ro(P)} = [ w [ 7 = (/1) — FO}/24.

This completes the proof of Theorem 5.

It is interesting to note the similarities between the rate of convergence of
the sequence R,(f) — I to zero and that of the sequence of the Fourier
coefficients a,(f) of the function f to zero. Indeed, consider both

Ro() = 1= 1 [ S (),
() = 5o [ 10) deion

The saw-tooth functions v,(f) in the study of convergence of R,(f) to the
integral of f on [0, 1] play similar roles to those of the functions e~%27%¢ in the
study of Fourier series. The difficulty in working with the functions v,(¢) is
that they are not orthogonal. However, they still satisfy some interesting
properties which are perhaps applicable to some approximation problems.
In the following lemma we establish such a property, an application of which
will be used in the proof of Theorem 4.

LEMMA. Let m and n be positive integers such that the quotient m/n is an
odd integer. Then

1 n
f Vil = ——— .
0

In particular,

f:u,ﬁ =112

Jor all positive integers n.

Proof. Write m = 2k -+ D)n, k = 0. Since v, has period 1/n and n
divides m, v,v,, also has period 1/n. Furthermore, on [0, 1/n], v,,, is sym-
metric about 1/2n, and on [0, 1/2#], v,(t) = —nt.
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Hence,

1 i/n 1/2n
f Vol = n'[ Vplpy = 2nf Vnlm
0 0 0

1/2n
= —2n? f to,(2) dt
0

/2n
= —2n? 'fl (s, () — mt) dt
[}

1/2n k (2j+1) /2m
=2mn2f tdt—znZij tdt
0 j=1 Y (2j-1)/2m
=T m2 Z’
= n/12m.

3. FUNCTIONS FOR WHICH THE ESTIMATES ARE BEST

We shall now construct examples showing that the estimates in (a), (b),
and (c) of Theorem 1 cannot be improved.

Proof of Theorem 2. This proof is easy. We define f(x) = 0if x = 0 or
if x is any irrational number in {0, 1). If x is a rational number in (0, 1], say
x == p/q, where p and ¢ are relatively prime positive integers, we define
fx) = f(p/qg) = ¢, . Since ¢,— 0, f is clearly continuous at each of the
irrationals on [0, 1]. Hence, fis Riemann integrable on [0, 1]. Now,

RO - [ =1 LTS

k—l

Il
R =
Nl

€0,n = €,

k=1

where k/n = py /G > (P> qe.n) = 1, sO that g, < 1, €, < €, , > for
each k = 1,...,,n,and n = 1, 2,..., by the monotonicity of the sequence {e,}.

Proof of Theorem 3. Let p be a positive integer, chosen so large that

€ = %(1 — 127 — 1/2? > 0.
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Order the rationals on [0, 1] as a sequence {x;}, j = 1, 2,..., so that x;
for j = 1,..., p. Define the step functions

( wg() if 0<x<x,
8=l i x,<x<1,

j=1,2,.... We then define our function f by

£ = igj(x).

285

= 13

It is clear that this series converges uniformly on {0, 1]. Hence, f is an

increasing function on [0, 1] with total variation f(1) — f(0) < 1.

Let v,(x) denote the number of points (k — 1/2)/n, k = 1,..., n, that lie

in the interval [0, x], and let n, =3 -(p + K)! — Lk = 1,2,.... As
let [£] be the integral part of . Then forall x€[0, 1Jand alln = 1, 2,...
clear that

va(X) = [nx + 1/2].
Hence,

| va(x)/n — x| < 1/n;

and, for x = x;,j = l,...,p, n = n,, k = 1,2,..., we also have

~ | — 3- k) —
vn(x,-)—nxj=[3 (p-;jk) 1+%]_ (p+3j) 1
3-(p+ R _3-(p+RI—1
> 3 ] 3
= 1/3j > 1/3p.

Therefore, foralln = n;, k = 1, 2,...,

[r=rn=Z [ =3 3 e — 1)

Ma

%(1 — Xx;)[2 — (1 — % vn(xj))/zi;

Jj=1

Z {va(x)/n — x;}/27 + Z walxs)n — x;3/27

=p+1

>1 33—2 (1 — 129 — 1127}
= ¢gy/n.

That is, m{l — R, (f)} = ¢ >O0fork = 1,2,....

usual,
, it is
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Proof of Theorem 4. Choose a sequence of positive integers n,,
0 < n, <n, < -, so that whenever j < p, n,/n; is an odd integer, and so
that 12¢, < 1/2Ffork = 1,2,.... Let

w

g(t) =} v. /2,

j=1

where v, are the saw-tooth functions defined in Section 2. Since | v,(¢)} < 1/2
for all k and all ¢ in [0, 1], the series converges uniformly to g. Hence, g is
integrable on [0, 1] and

fi oaf [ = 0.

We now define our absolutely continuous function f by

L s
Je=1

fo) = [ e

It is clear that

f:f= f: 1—-glt)dt = _f: tg(t) dt.

Hence,

n

n|[ 1= Rap] = —n [ wa— % [

k=1

:-nf:tg(z)dmrk‘;fl g

(k—1/2) /n

I

1 7 1
—n fo tg(t) dt + k; fo X(k—1/2)/ng

= Jz g(t) gél X(k——1/2)/n(1) - nt§ dt

[
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Therefore, if n = n, k = 1, 2,..., we can apply the lemma of Section 2 to
obtain

1 1
mll = R} = 13 [ g+ el 2 o
>1/12-2% > ¢, .

This completes the proof of the theorem.
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