Concerning Rates of Convergence of Riemann Sums

Charles K. Chui
Department of Mathematics, Texas $A \& M$ University, College Station, Texas 77843

Communicated by R. C. Buck
Received December 18, 1970

1. Introduction and Results

For a Riemann integrable function f on the closed interval $[0,1]$, we let I denote the Riemann integral of f over $[0,1]$ and consider the Riemann sums

$$
R_{n}(f ; a)=\frac{1}{n} \sum_{k=1}^{n} f((k-a) / n)
$$

where $0 \leqslant a \leqslant 1$; we set $R_{n}(f ; 1 / 2)=R_{n}(f)$. Some well-known results are included in the following theorem.

Theorem 1. (a) Iff is Riemann integrable on [0, 1], then

$$
R_{n}(f ; a)-I=o(1) \text { as } n \rightarrow \infty \text { for each } a, \quad 0 \leqslant a \leqslant 1 .
$$

(b) If f is a function of bounded variation on $[0,1]$ then

$$
R_{n}(f ; a)-I=O(1 / n) \text { as } n \rightarrow \infty \text { for each } a, \quad 0 \leqslant a \leqslant 1
$$

(c) If f is absolutely continuous on $[0,1]$, then $R_{n}(f)-I=o(1 / n)$ as $n \rightarrow \infty$.
(d) If f is differentiable on $[0,1]$ and its derivative f^{\prime} is of bounded variation on $[0,1]$, then $\left|R_{n}(f)-I\right| \leqslant T\left(f^{\prime}\right) / 8 n^{2}$ for all n, where $T\left(f^{\prime}\right)$ is the total variation of f^{\prime} on $[0,1]$.

Now (a) is clear. The proof of (b) is easy and can be found, essentially, in [2]. Proofs of the weaker and somewhat different forms of (c) and (d) are given in [2]. A proof of (c) is given in [1], where it is also pointed out that the Riemann sums $R_{n}(f)$ cannot be replaced by $R_{n}(f ; a)$ with $a \neq 1 / 2$. A proof of (d) is included in the following section, where we also indicate a unified proof of (b), (c) and (d) for $R_{n}(f)-I$ (i.e., for $a=1 / 2$). We also show that $O\left(1 / n^{2}\right)$ is the best possible estimate for $R_{n}(f)-I$ in (d), no matter
how smooth the function f is. One of the main purposes of this paper is to construct examples showing also that the other estimates in Theorem 1 cannot be improved. Perhaps our methods of proof (particularly, the use of the saw-tooth functions in the proofs of Theorems 1, 4 and 5) are more interesting than our results, especially as some of these results may already be known.

Theorem 2. Let $\left\{\epsilon_{n}\right\}$ be a sequence of positive numbers which converges monotonically to zero. Then there is a Riemann integrable function f on $[0,1]$ such that $R_{n}(f ; 0)-I \geqslant \epsilon_{n}$ for all n.

Theorem 3. There exist a positive number ϵ_{0}, an increasing function f of total variation less than one, and a sequence of positive integers $n_{k} \rightarrow \infty$, such that $n_{k}\left\{I-R_{n_{k}}(f)\right\} \geqslant \epsilon_{0}$ for all k.

Theorem 3 shows that the hypothesis of absolute continuity in (c) of Theorem 1 cannot be replaced by that of bounded variation.

Theorem 4. Let $\left\{\epsilon_{n}\right\}$ be any sequence of positive numbers converging to zero. Then there is an absolutely continuous function f on $[0,1]$ such that $n_{k}\left\{I-R_{n_{k}}(f)\right\} \geqslant \epsilon_{n_{k}}$ for $k=1,2, \ldots$, where $\left\{n_{k}\right\}$ is some sequence of positive integers tending to infinity.

Theorem 5. If f is twice differentiable and $f^{\prime \prime}$ is bounded and almost everywhere continuous on $[0,1]$, then

$$
\lim _{n \rightarrow \infty} n\left\{I-R_{n}(f)\right\}=\frac{1}{24} \int_{0}^{1} f^{\prime \prime}=\left\{f^{\prime}(1)-f^{\prime}(0)\right\} / 24
$$

A proof of Theorem 5, assuming continuity of $f^{\prime \prime}$ on [0,1], is given in [2]. Our proof of Theorem 5 here will be a continuation of the proof of Theorem 1 (d). As a consequence of Theorem 5, we see that the rate of convergence of $R_{n}(f)$ to I cannot be improved to $o\left(1 / n^{2}\right)$ unless $f^{\prime}(0)=f^{\prime}(1)$, no matter how smooth the function f is. In particular, if $f^{\prime \prime}$ is nonnegative and does not vanish on a set of positive measure, then $O\left(1 / n^{2}\right)$ is the best estimate for $R_{n}(f)-I$.

Corollary. Iff is twice differentiable, $f^{\prime \prime}$ is bounded and almost everywhere continuous, and $f^{\prime}(0)=f^{\prime}(1)$, then $R_{n}(f)-I=o\left(1 / n^{2}\right)$.

2. The Saw-Tooth Functions

For $0 \leqslant s \leqslant 1$, we denote by χ_{s} the characteristic function of the closed interval [$s, 1$], and for each positive integer n, we let

$$
s_{n}=\sum_{k=1}^{n} \chi_{(k-1 / 2) / n}
$$

Consider the "saw-tooth" functions $v_{n}(t)=s_{n}(t)-n t$. For each n, $v_{n}(0)=v_{n}(1)=0$, and v_{n} lies between $-1 / 2$ and $1 / 2$ and is linear with the exception of n unit jumps at the points $(k-1 / 2) / n, k=1, \ldots, n$. It is also clear that if f is Riemann integrable on $[0,1]$, then

$$
R_{n}(f)-I=\frac{1}{n} \int_{0}^{1} f(t) d v_{n}(t) .
$$

Hence, if f is of bounded variation on $[0,1]$, then

$$
R_{n}(f)-I=-\frac{1}{n} \int_{0}^{1} v_{n}(t) d f(t)
$$

so that

$$
\left|R_{n}(f)-I\right| \leqslant \frac{1}{2 n} \int_{0}^{1}|d f(t)| .
$$

That is, we have the following corollary of statement (b) of Theorem 1.
Corollary. If f is a function of bounded variation on $[0,1]$, then $\left|R_{n}(f)-I\right| \leqslant T(f) / 2 n$, where $T(f)$ is the total variation of f on $[0,1]$.

If f is absolutely continuous on $[0,1]$, then f^{\prime} is Lebesgue integrable there and

$$
R_{n}(f)-I=-\frac{1}{n} \int_{0}^{1} f^{\prime} v_{n}
$$

so that by a proof similar to that of the Riemann-Lebesgue theorem, we see that $R_{n}(f)-I=o(1 / n)$.

Now, let f be differentiable with f^{\prime} of bounded variation on [0, 1]. Let $T\left(f^{\prime}\right)$ denote the total variation of f^{\prime} on $[0,1]$, and let

$$
u_{n}(x)=\int_{0}^{x} v_{n}(t) d t
$$

Then $u_{n}(k / n)=u_{n}(0)=0$ for $k=1, \ldots, n$, each u_{n} is periodic with period $1 / n$, and

$$
\max _{0 \leqslant r \leqslant 1}\left|u_{n}(t)\right|=\int_{0}^{1 / 2 n}-v_{n}(t) d t=1 / 8 n
$$

But

$$
R_{n}(f)-I=-\frac{1}{n} \int_{0}^{1} v_{n} f^{\prime}=\frac{1}{n} \int_{0}^{1} u_{n} d f^{\prime}
$$

Hence,

$$
\left|R_{n}(f)-I\right| \leqslant T\left(f^{\prime}\right) / 8 n^{2}
$$

This completes the proof of statement (d) of Theorem 1.
Now, suppose that $f^{\prime \prime}$ is bounded and almost everywhere continuous on $[0,1]$, i.e., $f^{\prime \prime}$ is Riemann integrable there. Then

$$
\begin{aligned}
n^{2}\left\{R_{n}(f)-I\right\} & =n \int_{0}^{1} u_{n} f^{\prime \prime} \\
& =n \sum_{k=1}^{n} \int_{(k-1) / n}^{k / n} u_{n} f^{\prime \prime} \\
& =n \sum_{k=1}^{n} \int_{0}^{1 / n} u_{n}\left(t+\frac{k-1}{n}\right) f^{\prime \prime}\left(t+\frac{k-1}{n}\right) d t \\
& =\int_{0}^{1 / n} n u_{n}(t) \sum_{k=1}^{n} f^{\prime \prime}\left(t+\frac{k-1}{n}\right) d t \\
& =\int_{0}^{1} u_{n}(x / n) \sum_{k=1}^{n} f^{\prime \prime}((x+k-1) / n) d x
\end{aligned}
$$

Here, it can be seen that

$$
\begin{aligned}
u_{n}(x / n) & =\int_{0}^{x / n} v_{n} \\
& =\left\{\begin{array}{ll}
\int_{0}^{x / n}-n t d t \quad \text { if } \quad 0 \leqslant x<1 / 2, \\
-1 / 8 n+\int_{1 / 2 n}^{x / n}(1-n t) d t \quad \text { if } 1 / 2 \leqslant x \leqslant 1, \\
& =\left\{\begin{array}{rr}
-x^{2} / 2 n & \text { if } \\
-(1-x)^{2} / 2 n & \text { if } 1 / 2 \leqslant x \leqslant 1 .
\end{array}\right.
\end{array} . ; \text {. } 1 / 2,\right.
\end{aligned}
$$

Let

$$
w(x)=\left\{\begin{array}{lr}
x^{2} / 2 \quad \text { if } & 0 \leqslant x<1 / 2 \\
(1-x)^{2} / 2 & \text { if } \quad 1 / 2 \leqslant x \leqslant 1
\end{array}\right.
$$

Then $\int_{0}^{1} w=1 / 24$ and $u_{n}(x / n)=-w(x) / n$ for all n and for $0 \leqslant x \leqslant 1$. Hence,

$$
-n^{2}\left\{R_{n}(f)-I\right\}=\int_{0}^{1} w(x) R_{n}\left(f^{\prime \prime} ; 1-x\right) d x
$$

which gives

$$
\lim _{n \rightarrow \infty} n^{2}\left\{I-R_{n}(f)\right\}=\int_{0}^{1} w \int_{0}^{1} f^{\prime \prime}=\left\{f^{\prime}(1)-f^{\prime}(0)\right\} / 24
$$

This completes the proof of Theorem 5.
It is interesting to note the similarities between the rate of convergence of the sequence $R_{n}(f)-I$ to zero and that of the sequence of the Fourier coefficients $a_{n}(f)$ of the function f to zero. Indeed, consider both

$$
\begin{aligned}
R_{n}(f)-I & =\frac{1}{n} \int_{0}^{1} f(t) d v_{n}(t) \\
a_{n}(f) & =\frac{i}{2 \pi n} \int_{0}^{1} f(t) d e^{-i 2 \pi n t}
\end{aligned}
$$

The saw-tooth functions $v_{n}(t)$ in the study of convergence of $R_{n}(f)$ to the integral of f on $[0,1]$ play similar roles to those of the functions $e^{-i 2 \pi n t}$ in the study of Fourier series. The difficulty in working with the functions $v_{n}(t)$ is that they are not orthogonal. However, they still satisfy some interesting properties which are perhaps applicable to some approximation problems. In the following lemma we establish such a property, an application of which will be used in the proof of Theorem 4.

Lemma. Let m and n be positive integers such that the quotient m / n is an odd integer. Then

$$
\int_{0}^{1} v_{n} v_{m}=\frac{n}{12 m} .
$$

In particular,

$$
\int_{0}^{1} v_{n}^{2}=1 / 12
$$

for all positive integers n.
Proof. Write $m=(2 k+1) n, k \geqslant 0$. Since v_{n} has period $1 / n$ and n divides $m, v_{n} v_{m}$ also has period $1 / n$. Furthermore, on [$0,1 / n$], $v_{n} v_{m}$ is symmetric about $1 / 2 n$, and on $[0,1 / 2 n], v_{n}(t)=-n t$.

Hence,

$$
\begin{aligned}
\int_{0}^{1} v_{n} v_{m} & =n \int_{0}^{1 / n} v_{n} v_{m}=2 n \int_{0}^{1 / 2 n} v_{n} v_{m} \\
& =-2 n^{2} \int_{0}^{1 / 2 n} t v_{m}(t) d t \\
& =-2 n^{2} \int_{0}^{1 / 2 n} t\left(s_{m}(t)-m t\right) d t \\
& =2 m n^{2} \int_{0}^{1 / 2 n} t d t-2 n^{2} \sum_{j=1}^{k} j \int_{(2 j-1) / 2 m}^{(2 j+1) / 2 m} t d t \\
& =\frac{m}{12 n}-\frac{2 n^{2}}{m^{2}} \sum_{j=1}^{k} j^{2} \\
& =n / 12 m .
\end{aligned}
$$

3. Functions for Which the Estimates are Best

We shall now construct examples showing that the estimates in (a), (b), and (c) of Theorem 1 cannot be improved.

Proof of Theorem 2. This proof is easy. We define $f(x)=0$ if $x=0$ or if x is any irrational number in $(0,1)$. If x is a rational number in $(0,1]$, say $x=p / q$, where p and q are relatively prime positive integers, we define $f(x)=f(p / q)=\epsilon_{q}$. Since $\epsilon_{q} \rightarrow 0, f$ is clearly continuous at each of the irrationals on [0, 1]. Hence, f is Riemann integrable on [0, 1]. Now,

$$
\begin{aligned}
R_{n}(f ; 0)-\int_{0}^{1} f & =\frac{1}{n} \sum_{k=1}^{n} f(k / n) \\
& =\frac{1}{n} \sum_{k=1}^{n} \epsilon_{q_{k, n}} \geqslant \epsilon_{n}
\end{aligned}
$$

where $k / n=p_{k, n} / q_{k, n},\left(p_{k, n}, q_{k, n}\right)=1$, so that $q_{k, n} \leqslant n, \epsilon_{n} \leqslant \epsilon_{q_{k, n}}$, for each $k=1, \ldots, n$, and $n=1,2, \ldots$, by the monotonicity of the sequence $\left\{\epsilon_{n}\right\}$.

Proof of Theorem 3. Let p be a positive integer, chosen so large that

$$
\epsilon_{0}=\frac{1}{3 p}\left(1-1 / 2^{p}\right)-1 / 2^{p}>0 .
$$

Order the rationals on $[0,1]$ as a sequence $\left\{x_{j}\right\}, j=1,2, \ldots$, so that $x_{j}=1 / 3 j$ for $j=1, \ldots, p$. Define the step functions

$$
g_{j}(x)= \begin{cases}0 & \text { if } \quad 0 \leqslant x \leqslant x_{j} \\ 1 / 2^{j} & \text { if } \quad x_{j}<x \leqslant 1\end{cases}
$$

$j=1,2, \ldots$. We then define our function f by

$$
f(x)=\sum_{j=1}^{\infty} g_{j}(x)
$$

It is clear that this series converges uniformly on $[0,1]$. Hence, f is an increasing function on $[0,1]$ with total variation $f(1)-f(0)<1$.

Let $\nu_{n}(x)$ denote the number of points $(k-1 / 2) / n, k=1, \ldots, n$, that lie in the interval $[0, x]$, and let $n_{k}=3 \cdot(p+k)!-1, k=1,2, \ldots$. As usual, let $[t]$ be the integral part of t. Then for all $x \in[0,1]$ and all $n=1,2, \ldots$, it is clear that

$$
v_{n}(x)=[n x+1 / 2] .
$$

Hence,

$$
\left|v_{n}(x) / n-x\right| \leqslant 1 / n
$$

and, for $x=x_{j}, j=1, \ldots, p, n=n_{k}, k=1,2, \ldots$, we also have

$$
\begin{aligned}
v_{n}\left(x_{j}\right)-n x_{j} & =\left[\frac{3 \cdot(p+k)!-1}{3 j}+\frac{1}{2}\right]-\frac{3 \cdot(p+k)!-1}{3 j} \\
& \geqslant\left[\frac{3 \cdot(p+k)!}{3 j}\right]-\frac{3 \cdot(p+k)!-1}{3 j} \\
& =1 / 3 j \geqslant 1 / 3 p
\end{aligned}
$$

Therefore, for all $n=n_{k}, k=1,2, \ldots$,

$$
\begin{aligned}
\int_{0}^{1} f-R_{n}(f) & =\sum_{j=1}^{\infty}\left\{\int_{0}^{1} g_{j}-\frac{1}{n} \sum_{k=1}^{n} g_{j}((k-1 / 2) / n)\right\} \\
& =\sum_{j=1}^{\infty}\left\{\left(1-x_{j}\right) / 2^{j}-\left(1-\frac{1}{n} \nu_{n}\left(x_{j}\right)\right) / 2^{j}\right\} \\
& =\sum_{j=1}^{p}\left\{v_{n}\left(x_{j}\right) / n-x_{j}\right\} / 2^{j}+\sum_{j=p+1}^{\infty}\left\{\nu_{n}\left(x_{j}\right) / n-x_{j}\right\} / 2^{j} \\
& \geqslant \frac{1}{n}\left\{\frac{1}{3 p}\left(1-1 / 2^{p}\right)-1 / 2^{p}\right\} \\
& =\epsilon_{0} / n .
\end{aligned}
$$

That is, $n_{k}\left\{I-R_{n_{k}}(f)\right\} \geqslant \epsilon_{0}>0$ for $k=1,2, \ldots$.

Proof of Theorem 4. Choose a sequence of positive integers n_{k}, $0<n_{1}<n_{2}<\cdots$, so that whenever $j<p, n_{p} / n_{j}$ is an odd integer, and so that $12 \epsilon_{n_{k}} \leqslant 1 / 2^{k}$ for $k=1,2, \ldots$. Let

$$
g(t)=\sum_{j=1}^{\infty} v_{n_{j}}(t) / 2^{j},
$$

where v_{k} are the saw-tooth functions defined in Section 2. Since $\left|v_{k}(t)\right| \leqslant 1 / 2$ for all k and all t in $[0,1]$, the series converges uniformly to g. Hence, g is integrable on $[0,1]$ and

$$
\int_{0}^{1} g=\sum_{j=1}^{\infty}\left\{\int_{0}^{1} v_{n_{j}}\right\} / 2^{j}=0
$$

We now define our absolutely continuous function f by

$$
f(x)=\int_{0}^{x} g .
$$

It is clear that

$$
\int_{0}^{1} f=\int_{0}^{1}(1-t) g(t) d t=-\int_{0}^{1} \operatorname{tg}(t) d t
$$

Hence,

$$
\begin{aligned}
n\left\{\int_{0}^{1} f-R_{n}(f)\right\} & =-n \int_{0}^{1} \operatorname{tg}(t) d t-\sum_{k=1}^{n} \int_{0}^{(k-1 / 2) / n} g \\
& =-n \int_{0}^{1} \operatorname{tg}(t) d t+\sum_{k=1}^{n} \int_{(k-1 / 2) / n}^{1} g \\
& =-n \int_{0}^{1} t g(t) d t+\sum_{k=1}^{n} \int_{0}^{1} \chi_{(k-1 / 2) / n} g \\
& =\int_{0}^{1} g(t)\left\{\sum_{k=1}^{n} \chi_{(k-1 / 2) / n}(t)-n t\right\} d t \\
& =\int_{0}^{1} g v_{n} \\
& =\sum_{j=1}^{\infty}\left\{\int_{0}^{1} v_{n_{j}} v_{n}\right\} / 2^{j}
\end{aligned}
$$

Therefore, if $n=n_{k}, k=1,2, \ldots$, we can apply the lemma of Section 2 to obtain

$$
\begin{aligned}
n_{k}\left\{I-R_{n_{k}}(f)\right\} & =\frac{1}{12}\left\{\frac{n_{1}}{2 n_{k}}+\cdots+\frac{1}{2^{k}}+n_{k} / 2^{k+1} n_{k+1}+\cdots\right\} \\
& >1 / 12 \cdot 2^{k} \geqslant \epsilon_{n_{k}}
\end{aligned}
$$

This completes the proof of the theorem.

References

1. C. Chu, A convergence theorem for certain Reimann sums, Can. Math. Bull. 12 (1969), 523-525.
2. G. Pólya und G. Szegö, "Aufgaben und Lehrsätze aus der Analysis," p. 37, Springer, Berlin, 1925.
