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I. INTRODUCTION AND RESULTS

For a Riemann integrable function f on the closed interval [0, I], we let
I denote the Riemann integral offover [0, 1] and consider the Riemann sums

1 n

RnCf; a) = - L f((k - a)/n),
n k~l

where °~ a ~ I; we set RnCf; 1/2) = RnCf). Some well-known results are
included in the following theorem.

THEOREM I. (a) Iff is Riemann integrable on [0, 1], then

Rn(f; a) - I = 0(1) as n --+ 00 for each a, O~a~I.

(b) Iff is a function of bounded variation on [0, 1] then

Rn(f; a) - I = O(l/n) as n --+ 00 for each a, O~a~I.

(c) Iff is absolutely continuous on [0, 1], then Rn(f) - I = o(l/n) as
n --+ 00.

(d) If f is differentiable on [0, 1] and its derivative l' is of bounded
variation on [0, 1], then I RnCf) - I I ~ T(f')/8n2 for all n, where T(f') is the
total variation off' on [0, 1].

Now (a) is clear. The proof of (b) is easy and can be found, essentially,
in [2]. Proofs of the weaker and somewhat different forms of (c) and (d)
are given in [2]. A proof of (c) is given in [l], where it is also pointed out that
the Riemann sums RnCf) cannot be replaced by Rn(f; a) with a oF- 1/2.
A proof of (d) is included in the following section, where we also indicate a
unified proof of (b), (c) and (d) for Rn(f) - I (i.e., for a = 1/2). We also
show that O(l/n2) is the best possible estimate for Rn(f) - I in (d), no matter
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how smooth the function f is. One of the main purposes of this paper is to
construct examples showing also that the other estimates in Theorem 1
cannot be improved. Perhaps our methods of proof (particularly, the use of
the saw-tooth functions in the proofs of Theorems 1, 4 and 5) are more
interesting than our results, especially as some of these results may already
be known.

THEOREM 2. Let {En} be a sequence of positive numbers which converges
monotonically to zero. Then there is a Riemann integrable function f on [0, 1]
such that Rn(f; 0) - I ~ En for all n.

THEOREM 3. There exist a positive number EO , an increasing function f of
total variation less than one, and a sequence ofpositive integers nk ---+ 00, such
that nk{I - Rn (f)} ~ EO for all k.

k

Theorem 3 shows that the hypothesis of absolute continuity in (c) of
Theorem 1 cannot be replaced by that of bounded variation.

THEOREM 4. Let {En} be any sequence of positive numbers converging to
zero. Then there is an absolutely continuous function f on [0, 1] such that
nk{I - R n (f)} ~ En for k = 1,2,... , where {nk} is some sequence ofpositive

k k

integers tending to infinity.

THEOREM 5. If f is twice differentiable and !" is bounded and almost
everywhere continuous on [0, 1], then

lim n{I - Rn(f)} = 2
1
4 fI!" = {ff(1) - j'(0)}/24.

n~oo 0

A proof of Theorem 5, assuming continuity of1" on [0, 1], is given in [2].
Our proof of Theorem 5 here will be a continuation of the proof of
Theorem 1 (d). As a consequence of Theorem 5, we see that the rate of
convergence of Rn(f) to I cannot be improved to 0(1/n2) unless1'(O) = 1'(1),
no matter how smooth the function f is. In particular, if 1" is nonnegative
and does not vanish on a set of positive measure, then 0(1/n2) is the best
estimate for Rn(f) - 1.

COROLLARY. iffis twice differentiable,!" is bounded and almost everywhere
continuous, and1'(O) = 1'(1), then Rn(f) - I = 0(1/n2).
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2. THE SAw-TOOTH FUNCTIONS

281

For °~ S ~ 1, we denote by XS the characteristic function of the closed
interval [s, 1], and for each positive integer n, we let

n

sn = I X(k-I/2l/n •
k~I

Consider the "saw-tooth" functions vn(t) = sn(t) - nt. For each n,
vn(O) = vn(1) = 0, and Vn lies between - 1/2 and 1/2 and is linear with the
exception of n unit jumps at the points (k - 1/2)/n, k = 1,... , n. It is also
clear that iff is Riemann integrable on [0, 1], then

1IIRn(f) - / = - jet) dvn(t).
n 0

Hence, iff is of bounded variation on [0, 1], then

1IIRn(f) - / = - - vit) djU),
n 0

so that

I Rn(f) - / I ~ in J: I dj(t)l.

That is, we have the following corollary of statement (b) of Theorem 1.

COROLLARY. If f is a function of bounded variation on [0, 1], then
I Rn(f) - / I ~ T(f)/2n, where T(f) is the total variation off on [0, 1].

Iff is absolutely continuous on [0, 1], then f' is Lebesgue integrable there
and

1 1 ,
Rif)-/= -lif/Vn,

so that by a proof similar to that of the Riemann-Lebesgue theorem, we see
that Rn(f) - / = o(1/n).

Now, let f be differentiable with f' of bounded variation on [0, 1]. Let
T(f') denote the total variation off' on [0, 1], and let

un(x) = f: vn(t) dt.

Then un(k/n) = unC0) = °for k = 1,... , n, each Un is periodic with period lin,
and

f
I / 2n

max I Un(t) I = - vn(t) dt = 1/8n.
O~t~l 0
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But

Hence,
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1 I 1 I

Rn(f) - 1= - - f Vn!' = - f Un dj'.
non 0

I Rn(j) - I I :::;; T(j')j8n2•

This completes the proof of statement (d) of Theorem 1.
Now, suppose that 1" is bounded and almost everywhere continuous on

[0, I], i.e.,1" is Riemann integrable there. Then

n kjn
= n L f un1"

k~l (k-l)jn

ljn n k I
= f nun(t) L 1" (t + -=-) dt

o k~l n

= run(x/n) f 1"«X + k - 1)/n) dx.
o lc~l

Here, it can be seen that

if 1/2:::;; x :::;; 1,

Let

f
Xjn

un(x/n) = Vn
o

!f
Xjn

= 0 - nt dt if 0 ~ x < 1/2,

f
Xjn

-1/8n + (I - nt) dt
1/2n

l-x2/2n if 0:::;; x < 1/2,
- -(1 - x)2/2n if 1/2 ~ x ~ 1.

!
x2j2 if 0:::;; x < Ij2,

w(x) = (1 - x)2/2 if 1/2:::;; x :::;; 1.

Then f~ w = 1/24 and un(xjn) = -w(x)/n for all n and for 0 ~ x ~ 1.
Hence,
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which gives

lim n2{I - Rn(f)} = II W IIf" = {f'(l) - f'(0)}/24.
n-'1XJ 0 0
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This completes the proof of Theorem 5.
It is interesting to note the similarities between the rate of convergence of

the sequence Rif) - I to zero and that of the sequence of the Fourier
coefficients an(f) of the functionfto zero. Indeed, consider both

I IIRn(f) - 1= - f(t) dvn(t),
n 0

The saw-tooth functions vn(t) in the study of convergence of Rn(f) to the
integral offon [0, I] play similar roles to those of the functions e-i21Tnt in the
study of Fourier series. The difficulty in working with the functions vn(t) is
that they are not orthogonal. However, they still satisfy some interesting
properties which are perhaps applicable to some approximation problems.
In the following lemma we establish such a property, an application of which
will be used in the proof of Theorem 4.

LEMMA. Let m and n be positive integers such that the quotient min is an
odd integer. Then

In particular,

for all positive integers n.

Proof Write m = (2k + l)n, k :;;;, 0. Since Vn has period lin and n
divides m, VnVm also has period lin. Furthermore, on [0, lin], VnVm is sym
metric about 1/2n, and on [0, 1/2n], vn(t) = -nt.
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Hence,
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I
l / 2n

= - 2n2
0 tvm(t) dt

I
l / 2n

= -2n2
'0 t(Sm(t) - mt) dt

1/2n k I(2i+l)/2m
= 2mn2 I t dt - 2n2 L j t dt

o i~1 (2i-l) /2m

m 2n2 k
_ '" '2- 12n - m 2 !-oj

3=1

= n112m.

3. FUNCTIONS FOR WHICH THE ESTIMATES ARE BEST

We shall now construct examples showing that the estimates in (a), (b),
and (c) of Theorem 1 cannot be improved.

Proof of Theorem 2. This proof is easy. We define f(x) = 0 if x = 0 or
if x is any irrational number in (0, 1). If x is a rational number in (0, 1], say
x = plq, where p and q are relatively prime positive integers, we define
f(x) = f(plq) = Eu . Since Eu-- 0, f is clearly continuous at each of the
irrationals on [0, 1]. Hence,fis Riemann integrable on [0,1]. Now,

1 I n
RnU; 0) - f f = - L f(kln)

o n k=I

I n

= - '" EUk ~ En ,n L" .n
k=l

where kin = Pk.nlqk.n, (Pk.n, qk.n) = 1, so that qk.n ~ n, En ~ EUk• n ' for
each k = 1,... , n, and n = 1,2,... , by the monotonicity of the sequence {En}.

Proof of Theorem 3. Let P be a positive integer, chosen so large that

I
EO = 3p (1 - 1/2P

) - 1/2P > O.
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Order the rationals on [0,1] as a sequence {Xi},j = 1,2,... , so that Xi = 1/3j
for j = 1,... , p. Define the step functions

if 0:( X :( Xj ,

if Xi < X :( 1,

j = 1,2,.... We then define our functionfby
00

I(x) = L gix).
i~l

It is clear that this series converges uniformly on [0, 1]. Hence, I is an
increasing function on [0, 1) with total variation 1(1) - f (0) < 1.

Let vn(x) denote the number of points (k - 1/2)/n, k = 1, , n, that lie
in the interval [0, x], and let nk = 3 . (p + k)! - 1, k = 1,2, As usual,
let [t] be the integral part of t. Then for all x E [0, 1] and all n = 1, 2, ... , it is
clear that

Vn(X) = [nx + 1/2].

Hence,

I vn(x)/n - x I :( lin;

and, for x = Xj,j = 1,...,p, n = nk, k = 1,2,... , we also have

. _ . _ [ 3 . (p + k)! - 1 !] _ 3· (p + k)! - 1
vn(x,) nx, - 3j + 2 3j

[
3 . (p + k)! ] _ 3 . (p + k)! - 1

~ 3j 3j

= 1/3j ~ 1/3p.

Therefore, for all n = nk , k = 1, 2,... ,

~ 00

= L {vnCxj)/n - xj}/2j + L {vn(xj)/n - xj}/2i

i~l i~p+l

>: ! \~ (1 - 1/2p ) - 1/2P (
r n 13p \

= Eo/n.

That is, nk{I - Rn (fn ~ EO > 0 for k = 1,2,....
k
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Proof of Theorem 4. Choose a sequence of positive integers nk ,

o < n1 < n2 < ..., so that whenever j < p, np/nj is an odd integer, and so
that 12€n ~ 1/2k for k = 1,2,... . Let

k

00

g(t) = L vn/t)/2 j
,

;=1

where Vk are the saw-tooth functions defined in Section 2. Since I Vk(t)! ~ 1/2
for all k and all tin [0, 1], the series converges uniformly to g. Hence, g is
integrable on [0, 1] and

We now define our absolutely continuous functionfby

f(x) = (g.
It is clear that

f> = (1 - t) g(t) dt = - ( tg(t) dt.

Hence,

1
1 ! 1 n (k-1 /2)/n

n f/ - Rn(f)\ = -n f
o

tg(t) dt - k~1 f
o

g

= -nrtg(t) dt + ±r g
o k=1 (k-1/2) In

= -nr tg(t) dt + ±rX(k-l/2)/ng
o k~1 0

= (g(t) I~1 X(k-l/2)/n(t) - nt\ dt

1

= So gVn
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Therefore, if n = nk' k = 1,2,... , we can apply the lemma of Section 2 to
obtain

nk{I - Rnk(f)} = 11212~k + ... + ik + nk/2k
+1nk+1 + ... \

> 1/12 . 2k :;? €nk .

This completes the proof of the theorem.
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